domingo, 24 de abril de 2011

SEMANA 14 (12, 14y 15 de abril)

SEMANA 14 JUEVES
Y tú, ¿cómo te alimentas?
¿Cómo se conservan los alimentos?

Equipo PROTEINAS
1 Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos.
Las proteínas son biopolímeros, es decir, están constituidas por gran número de unidades estructurales.
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan.
2 Estas son macromoléculas compuestas por carbono, hidrógeno, oxígeno y nitrógeno. La mayoría también contienen azufre y fósforo. Las mismas están formadas por la unión de varios aminoácidos, unidos mediante enlaces peptídicos. El orden y disposición de los aminoácidos en una proteína depende del código genético, ADN, de la persona.
Las proteínas constituyen alrededor del 50% del peso seco de los tejidos y no existe proceso biológico alguno que no dependa de la participación de este tipo de sustancias.
Las funciones principales de las proteínas son:
• Ser esenciales para el crecimiento. Las grasas y carbohidratos no las pueden sustituir, por no contener nitrógeno.
• Proporcionan los aminoácidos esenciales fundamentales para la síntesis tisular.
• Son materia prima para la formación de los jugos digestivos, hormonas, proteínas plasmáticas, hemoglobina, vitaminas y enzimas.
• Funcionan como amortiguadores, ayudando a mantener la reacción de diversos medios como el plasma.
• Actúan como catalizadores biológicos acelerando la velocidad de las reacciones químicas del metabolismo. Son las enzimas.
Actúan como transporte de gases como oxígeno y dióxido de carbono en sangre. (hemoglobina).
• Actúan como defensa, los anticuerpos son proteínas de defensa natural contra infecciones o agentes extraños.
Permiten el movimiento celular a través de la miosina y actina (proteínas contráctiles musculares).
• Resistencia. El colágeno es la principal proteína integrante de los tejidos de sostén.

3 Las proteínas son los materiales que desempeñan un mayor numero de funciones en las células de todos los seres vivos. Por un lado, forman parte de la estructura básica de los tejidos (músculos, tendones, piel, uñas, etc.) y, por otro, desempeñan funciones metabólicas y reguladoras (asimilación de nutrientes, transporte de oxígeno y de grasas en la sangre, inactivación de materiales tóxicos o peligrosos, etc.). También son los elementos que definen la identidad de cada ser vivo, ya que son la base de la estructura del código genético (ADN) y de los sistemas de reconocimiento de organismos extraños en el sistema inmunitario.
Son macromoléculas orgánicas, constituidas básicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (I), etc...
Estos elementos químicos se agrupan para formar unidades estructurales llamados AMINOÁCIDOS, a los cuales podríamos considerar como los "ladrillos de los edificios moleculares proteicos".
Se clasifican, de forma general, en Holoproteinas y Heteroproteinas según estén formadas respectivamente sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos

4 Clasificación
Según su forma
Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina.
Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.
Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos) Según su composición química
Simples: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas).
Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas con un grupo prostético.



5 Las proteínas desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y más diversas. Son imprescindibles para el crecimiento del organismo. Realizan una enorme cantidad de funciones diferentes, entre las que destacan:
• Inmunológica (anticuerpos),
• Enzimática (sacarasa y pepsina),
• Contráctil (actina y miosina).
• Homeostática: colaboran en el mantenimiento del pH,
• Transducción de señales (rodopsina)
• Protectora o defensiva (trombina y fibrinógeno)
Las proteínas están formadas por aminoácidos.

6 Las proteínas son compuestos químicos muy complejos que se encuentran en todas las células vivas: en la sangre, en la leche, en los huevos y en toda clase de semillas y pólenes. Hay ciertos elementos químicos que todas ellas poseen, pero los diversos tipos de proteínas los contienen en diferentes cantidades. En todas se encuentran un alto porcentaje de nitrógeno, así como de oxígeno, hidrógeno y carbono. En la mayor parte de ellas existe azufre, y en algunas fósforo y hierro.
Las carnes, las leches y sus derivados, las frutas y los vegetales requieren de la técnica de congelación que consiste en almacenar los alimentos a temperaturas que varían de 0ºC a 4ºC, esta temperatura no destruye a los microorganismos, pero impiden su reproducción.


IDENTIFICACIÓN DE PROTEÍNAS
Material: Lámpara de alcohol, agitador de vidrio, capsula de porcelana, tubo de ensaye, vaso de precipitados de 50 ml.
Sustancias: Albumina de huevo, huevo crudo, acido nítrico, agua.
Procedimiento:
-Colocar en el tubo de ensaye dos mililitros de agua, y adicionar una muestra de albumina de huevo, agitar hasta disolución y agregar cuidadosamente tres gotas del acido nítrico.
-Calentar cuidadosamente la disolución hasta ebullición y anotar los cambios observados.
-Separar la clara del huevo crudo y colocarla en el vaso de precipitados, agregar agua hasta los cincuenta mililitros, agitar hasta disolución.
- Colocar en el tubo de ensaye dos mil litros de la disolución anterior y agregar cuidadosamente tres gotas del acido nítrico.
- Calentar cuidadosamente la disolución del tubo de ensaye hasta ebullición y anotar los cambios observados.
Observaciones
Sustancias Color inicial Color final
Albumina de huevo Blanco transparente con poca espuma Amarillo con café [Para esto tuvo que hervir]
Clara de huevo crudo Blanco transparente con grumos Amarillo/ blanco [dentro de el había espuma y tipo gel]

CONCLUSIONES
Con este experimento pudimos identificar las reacciones de cada sustancia y sus colores que se producían al agregar un poco de agua y agitar, asimismo agregar acido nítrico y combinarlas con todo lo anterior se puede observar el color Inicial y para el color Final lo exponemos al fuego.
La sacarosa al ponerse en contacto con el fuego se hace líquido y posteriormente se carboniza.
Los lípidos: Al poner aceite en la capsula de porcelana junto con las demás sustancias, hirvió desprendiendo otro olor y esperar a que se forme la pasta. Queda espuma y esta forma el jabón solido si se deja enfriar y asimismo se realiza un jabón sólido.

RECAPITULACION 14
El día martes cada equipo pasó a exponer sus proyectos o presentaciones de acuerdo a un tema elegido.
El día jueves realizamos un experimento donde al poner aceites con otras sustancias y dejarlo hervir forma una pasta sólida, sin embargo también quedaba líquido. También vimos que la sacarosa al ponerse en contacto con el fuego se hace líquida y posteriormente se carboniza. Por último hicimos otro experimento con la albumina de huevo y la clara de huevo.





domingo, 3 de abril de 2011

SEMANA 12 (29, 31 marzo y 1 abril)

SEMANA 12
¿Qué grupos funcionales están presentes en los nutrimentos orgánicos?

Equipo Familia Nombre Grupo funcional ejemplos usos
1 Alcanos
Alquenos
Eteno: CH 2 = CH 2

CH3CH2Br + KOH → CH2=CH2 + H2O + KBr . La elevada reactividad del doble enlace los hace importantes intermediarios de la síntesis de una gran variedad de compuestos orgánicos.
Probablemente el alqueno de mayor uso industrial sea el ETILENO (eteno) que se utiliza entre otras cosas para obtener el plástico POLIETILENO, de gran uso en cañerías, envases, bolsas y aislantes eléctricos. También se utiliza para obtener alcohol etílico, etilen-glicol, cloruro de vinilo y estireno


2 Alquinos
Alcoholes .
3 Ácidos
Cetonas

.
4 Aldehidos
Aminas

CH3-NH2
Metilamina o aminometano
CH3-NH-CH3
Dimetilamina o metilaminometano Las aminas alifáticas se emplean en las industrias química, farma- céutica, de caucho, plásticos, colorantes, tejidos, cosméticos y metales. Sirven como productos químicos intermedios, disolventes, aceleradores del caucho, catalizadores, emulsionantes, lubricantes sintéticos para cuchillas, inhibidores de la corrosión y agentes de flotación. Muchas de ellas se emplean en la fabricación de herbicidas, pesticidas y colorantes. En la industria foto- gráfica, la trietilamina y la metilamina se utilizan como aceleradores para reveladores. La dietilamina se utiliza como inhibidor de la corrosión en las industrias metalúrgicas y como disolvente en la industria del petróleo. En las industrias de curtidos y cuero, la hexametilentetramina se utiliza como conservante de curtidos; la meti- lamina, la etanolamina y la diisopropanolamina son agentes reblandecedores de pieles y cuero.

5 Amidas
Esteres RCONR'R


La acrilamida.-se emplea en distintas aplicaciones, aunque es más conocida por ser probablemente carcinógena y estar presente en bastantes alimentos al formarse por procesos naturales al cocinarlos.
son fuente de energia para el cuerpo humano.
Por ejemplos pueden ser vitaminas en el cuerpo o analgésicos.

Las grasas, que son ésteres de glicerina y ácidos grasos (ácido oleico, ácido esteárico, etc.) Las amidas son comunes en la naturaleza y se encuentran en sustancias como los aminoácidos, las proteínas, el ADN y el ARN, hormonas, vitaminas.
Es utilizada en el cuerpo para la excreción del amoníaco ( NH3)
Muy utilizada en la industria farmacéutica, y en la industria del nailon.
Los esteres pueden participar en los enlaces de hidrógeno como aceptadores, pero no pueden participar como dadores en este tipo de enlaces, a diferencia de los alcoholes de los que derivan

6 Cíclicos
Policiclicos


Cíclicos:
Ciclobutano
1-etil-3-metil-5-propil-ciclohexano
3,4,5-trimetil-ciclohexeno

Policiclicos:
Antraceno An
Fenantreno Ph
Fluoranteno Fl
Pireno
Py
Criseno
Chry
Naftaleno
Np Hidrocarburos cíclicos: Son cadenas cerradas que se dividen en Aliciclicos (cicloalcanos, cicloalquenos y cicloaquinos) y Aromáticos (anillos aromaticos e insaturados). Existen compuestos que tienen varios anillos unidos, los policíclicos.
Cicloalcanos: ciclo formado por enlaces simples. El más simple de todos es el ciclopropano.
Cicloalquenos: Hidrocarburos cíclicos con enlaces doble. El más simple es el ciclopropeno
Cicloalquinos: presentan triples enlaces. El más simple es el ciclopropino.

Casi todo el antraceno es oxidado para dar antraquinona y por lo tanto sustancia de partida en la síntesis de una amplia gama de colorantes como la alizarina. Además se utiliza en la síntesis de algunos insecticidas, conservantes, etc.


Sustancias en los alimentos
Material: tintura de yodo , almidón, sal refinada , sal de grano,
papas , bolillo o pan de caja , tortilla de harina , pastillas de vitamina C(acido ascórbico) , semillas de trigo, agua, , gotero , capsula de porcelana, navaja, limones(acido cítrico) y una bebida de fruta.
________________________________________


a) Preparación de reactivos
- Colocar unas gotas de la solución de yodo en un vaso y agregar agua para lograr una solución diluida que debe quedar de un color amarillo claro.

- Poner una pequeña cantidad de almidón en un vaso y añadir un poco de agua y agitar, resulta una suspensión blanquisca.

b) Determinación de almidón
- Cortar con mucho cuidado, ayudado con un navaja los extremos a 4 semillas de trigo. O el pan.

- Colocar por separado en la capsula de porcelana: una pequeña cantidad de la suspensión de almidón, unas tiras de la tortilla de harina, un fragmento de migajón de pan, unas tiras de la tortilla de maíz y 3 semillas de trigo sin los extremos.

- Añadir a cada sustancia unas 5 gotas de la solución diluida de yodo.

- Observar que acontece:
c) Determinación de yodo
- Moler unos cuantos granos de sal en grano hasta que quede un polvo fino

- Colocar por separado en 2 tapas de refresco(capsula e porcelana) sal en grano molida y sal de mesa

- Añadir a ambas tapas una pequeña cantidad de almidón en polvo

- Agregar a las dos tapas un poco de agua

-Esperar 10 minutos y observar

d) Determinación de vitamina C
- Moler la pastilla de vitamina C (Acido ascórbico)

- Exprimir un limón y obtener un poco de jugo

- Colocar en una capsula de porcelana un poco de polvo de vitamina C(acido as orbico), añadir agua y disolver.

- En la capsula poner por separado, jugo de limón(acdio cítrico) y una bebida de frutas

- Añadir a todas las tapas 3 gotas de solución diluida de yodo y agitar

- Finalmente colocar en cada tapa 5 gotas de la suspensión de almidón, esperar 2 minutos y observar

Observaciones:
Actividad Observaciones:
A
B
C
D
Conclusiones:La mayoría de los alimentos contiene almidón, que este a su vez se convierte en carbohidratos. Esta es una molécula muy grande que contiene polímeros que se endurece cuando le das energía calorífica para hacer la polimerización.






SEMANA 12 JUEVES
ANALISIS DE UN “GANSITO”

CONSEGUIR UN GANSITO PARA ANALIZAR LOS COMPUSTO QUE LO FORMAN:
NOMBRE DEL COMPUESTO FORMULA CONDENSADA ESTRUCTURA ORIGEN USOS
colesterol
Fibra dietética
Grasa mono insaturada
Bicarbonato de sodio
Sulfato
Fosfato de aluminio
Almidón
Glucosa
Azucares
Acido fólico
Calcio
Grasas saturadas
Yodo
Zinc
Hierro
Huevo
Glicerina
Propinato de sodio

Carboximetilcelulosa

Soya
Sorbitol
Cocoa
Monogliceridos de acidos grasosos

Acido benzoico
Esteres de poliglicerol

Polisorbato
Saborizante arfiticial

Azúcar
Leche reconstituida
Harina de trigo
Goma arabica
Goma xantana

Conclusiones:♥ Con lo anterior pudimos ver la oxidación dejándolo sin alguna impureza y las propiedades que tenia cada uno.

Semana 12 Jueves
El Tubo de Crookes es un cono de vidrio con 1 ánodo y 2 cátodos. Es una invención pero mas en parte una innovacion del científico William Crookes en el siglo XIX, y es una versión más evolucionada del desarrollo del Tubo de Geissler.
Descripción y utilización
Consiste en un tubo de vacío por el cual circulan una serie de gases, que al aplicarles electricidad adquieren fluorescencia, de ahí que sean llamados fluorescentes. A partir de este experimento (1895) Crookes dedujo que dicha fluorescencia se debe a rayos catódicos, que consisten en electrones en movimiento, y, por tanto, también descubrió la presencia de electrones en los átomos.
Al final del cono de vidrio, una banda calentada eléctricamente, llamada cátodo, produce electrones. Al lado opuesto, una pantalla tapada de fósforo forma un ánodo el que está conectado al terminal positivo del voltaje (unos cien voltios), del cual su polo negativo está conectado al cátodo.
La Cruz de Malta
Crookes para comprobar la penetrabilidad de rayos catódicos, debe realizar un tercer tubo, el cual llama la cruz de Malta, ya que entre el cátodo y el ánodo está localizado un tercer elemento, una cruz hecha de Zinc, un elemento muy duro.
El experimento consistía en que el rayo se estrellaba contra la cruz y la rodeaba, para posteriormente generar una sombra al final del tubo. Con este tubo es posible demostrar que los rayos catódicos se propagan en línea recta. Una pantalla metálica con forma de cruz de Malta, se dispone de modo que intercepte el haz de los rayos catódicos, produciendo una zona de sombra sobre la pantalla que satisface las leyes de la propagación de las ondas rectilíneas.
Aplicación del Tubo de pantalla







RECAPITULACIÓN!!!

el dia martes pasamos a escribir los grupos funcionales de las amidas, esteres, entre otros, algunos ejemplos y como funcionan. tambien realizamos un experimento en el cual vimos el amidón de los elementos, agregandoles yodo a cada uno de ellos.
el dia jueves realizmaos un experimento con diversos alimentos en el cual al agregar acido reaccionaba con ellos y les quitaba la oxidación y vimos las propiedades del gansito. por ultimo vimos reacciones en la computadora.